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ABSTRACT

T‘his correspondence discusses the parallel and pipeline organization

of fast unitary transforms algorithms such as the Fast Fourier Transform

and polnts out the efficiency of a combined parallel-pipeline processor

of a transform such as the Haar transform in which (Zn—l) hardware

( ;
i "putterflies" generate a transform of order 2™ every -computation cycle.
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Algorithms for all fast unitary transforms, such as the Fast Fqurier
transform (FFT), fast Walsh-Hadamard transform (FWT) -and othef'fast
unitary transform [1], require n stages of ‘computation for t?ansformslof
order 2n'“ Eaéh stage of.computatiqn,caﬁ be in furn decomposed Into at
most.2n“1 "butterflies"-[Zi,‘each performing a :otatibn by'é matrix of
order 2. Some or all of the butte;flies at one stage Ef gompqtation_céﬁ
operate in parallel (see [3], [4] for FFT) and fast unitary transforms
have thus a greater potential in applications with the development of
low cost parallel circuitry. For example, we show in'Fig. la the FFT
Cooley—Tukey.algorithm of order 4 with 2 butterflies in each of its 2
stages of comﬁutatibn. If 1 seconds is the time required to pefform a
bhtterfly operation, each stage can. be performed in 1 seconds with the
highest possible degree of parallelism which uses Zn_l butterflies. Thus,
a trarsform of order 2" can be performed in nt seconds as compared to
n2n_11 sec?ﬁds with sequential compufation (which requires only one
butterfly%ﬂ

If a number of successive transforms have to be compﬁted, it is
possible to increase further the throughput rate with several transformers
working simultaneously, each operating on a different input vector and
each possibly at a different stage of computation (see [5] for FFT):
this is generally referred to as a pipeline organization. Parallel and
pipeline organizations can be combined conveniengly with nzn—l(at most)
buttérfliés working in parallel'and one transform of order 2" is obtained
evéry T secohds on the average. Fig. 1b shows a poséible drgénizatioﬁ of
the FFT Cocley-Tukey algorithm of order 4. All stagés of this pipeline

algorithm are identical: the 2 first butterflies perform the first stage
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of Fig la and the 2 last butterflies perform the second stage. The
input vector is entered in the first 4 cells and its FFT transform

obtained in the same cells after 2 cycles. . This algorithm can be wired-

: in and will give the transform coefficients in any order but it requires

a large amount of hardware and requires the access at its input of two
sets of n2" storage cells.1
Some transforms, however, do not require Zn_l butterflies at each

stage of computation and then a pipeline algorithm can be implemented with

much less hardware. We consider now in particular a pipeline algorithm

for the Fast Haar Transform . (FHT). Although less known, the FHT is

‘closely ;elated to the FWT [6], has a fast algorithm [7], is certainly a

transform of interest for signal encoding [8], [9] and other applica-

tions [10)]. A pipeline-parallel algorithm'for the FHT requires only

(2“—1) butterflies and still produces a transform of order 2" at every

cycle, We show in Fig. 2a the Haar matrix of order 8 and in Fig. 2b a
possible organlzation sf the FHT of the same order. The number of eutter—
flies decreases for successive stages and this is the property which can
be exploited in a pipeline processor. 1In Fig. 3, we show a stage of a
possible organization of the pipeline FHT of order 8.

Many othec transforms can have similar pipeline algorithms with
reduced amwount of hardware: the Modified generalized discrete transforms
{11], the WFH transforms {1], tﬁe Siant Haar transforms [12] and other
generalieed Slant transforms [13]. In all cases, the pipelime-parallel
algorithm needed'to perform a transform of order 2™ in one cycle is the
total number of butterflies appearing in the flow diagrem of the algorithm.
By contrast, parallel processing requires the maximum number of betterflies

needed at any stage.
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FOOTNOTE

1The computation can be also performed "in place” with n2" storage cells

only followed by cyclic shifts‘by 2" cells.

CAPTTONS

Fig. la : FFT Cooley-Tukey Algorithm of order 4

Fig. 1b : Pipeline FFT Cooley-Tukey Algorithm of order 4

Fig. 2a : Haar matrix of order 8

Fig. 2b : Fast Haar Transform of order 8

Fig. 3

Pipeline Fast Haar Transform of order 8.
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